Errata — Advanced Macroeconomics, a Primer by Patrick Minford and David Peel (second impression)

page 18, second para, equation should read \(\hat{p}_t^e - \hat{p}_{t-1}^e = k[\hat{p}_{t-1} - \hat{p}_{t-1}^e] \)

p 22, second line of box should read: Remembering that \(\Delta \ln x_t = \frac{\Delta x_t}{x_t} \)

p 27 last line to read: \(p_t + ap_{t-1} + bp_{t-2} = 0 \)

p 92 second equation from bottom to read: \(\frac{E(\pi_0 \pi_t, \pi_{t+1})}{E(\pi_{t+1} \pi_t)} = \frac{\sigma^2}{\sigma_t^2 + \sigma_{t+1}^2} \)

p. 158 bottom line left hand side of equation, numerator to read: \(-\lambda_1 = \frac{2\beta(1-L_1)(1-\gamma)(1-\rho)}{\frac{1}{1}\gamma(1-\rho)} \)

p. 240 equation (4) to read: \(r_t = (1-\alpha) \frac{r_t}{x_t} \); that is, \(k(r) = \left(\frac{r}{x_0} \right)^{-1} \)

p. 243 equation (10) to read: \(Y_t = (\exp \frac{\pi}{\alpha}) Y_t^{-\alpha} L_t^{-\alpha} \)

p. 290 equation (64) at bottom to read: \(c_0 = E_0 c_1 [\beta(1+r_0)]^{-\gamma(1-\rho)} \ldots \) (as before)

p. 291 second line to read: where \(-\lambda_1 = \frac{2\beta(1-L_1)(1-\gamma)(1-\rho)}{\frac{1}{1}\gamma(1-\rho)} \)

line after equation (68) to read: where \(K_0 = \) as before

p. 302 equation (8) denominator term in \(\epsilon_t \) to read: \(1 + \alpha^2(\lambda - \beta \gamma_2) \)

p. 316 seventh line to read: It maximizes \(E_{t=0} \sum_{t=0}^\infty \beta^t u(c_t) \) subject to

p. 325 equation (16) term in \(s_{t-1}^\prime \) to read \(\left\{ \frac{\ldots d_{t-1}^\prime(1-\pi)}{\epsilon_t} \right\} \)

equation (17) to read \(y_t = (1-L_t)^\pi d_t(s_t - [1-\pi]s_t^\prime) \)

p. 326 equation (22) rhs numerator to read: \(\ldots (1-L_t)^\pi(1-\pi)(1-\pi)(s_t - [1-\pi]s_t^\prime) \)

equation (23) lhs to read \(\left\{ \frac{\ldots d_{t-1}^\prime(1-\pi)}{\epsilon_t} \right\} \)

equation (25) to read \(s_t + s_t^\prime = 1 = s_t^\prime + s_t^\prime \)

p. 327 equation (28) lhs to read \(\ldots d_{t-1}(1-\pi)s_t^\prime \)

same equation rhs to read \(\ldots - \frac{n_{t-1} \ldots d_{t-1}(1-\pi)s_{t-1}^\prime}{\epsilon_t} \)