
2. Difference Equation Solution Technique

Tutorial 6

Consider the following model of a closed economy. Y denotes output, C denotes
consumption expenditure, and I denotes investment expenditure. The subscripts t and t-1
refer to the respective time periods.

Yt = Ct + It

Ct = 200 + 0.75Yt−1

It = 150 + 0.15Yt−1

    6.1

    6.2

    6.3

1. Condense the model into a difference equation involving output and comment on its
properties.

2. Solve for equilibrium output (assume Y0 = 4000) and comment on the time path of
output.

Solution

1) Substitute equations (6.2) and (6.3) in (6.1) to get the reduced form equation in terms
of Yt:

⇒ Yt = 200 + 0.75Yt−1 + 150 + 0.15Yt−1

or

Yt − 0.9Yt−1 = 350     6.4

What we have is a first-order nonhomogeneous difference equation in terms of Yt.

Conjecture Suppose we are seeking the solution to the first-order difference equation
Yt+1 − aYt = c where a and c are two constants. The general solution will consist of the
sum of two components: a particular integral yp (representing the intertemporal
equilibrium level of y), which is any solution of the complete nonhomogeneous equation



(6.4), and a complementary function yc (representing the deviation of the model from
equilibrium), which is the general solution of the reduced equation.

Since, the complementary function of a first-order difference equation yc can be
expressed as

yc = A1bt

we can write the complementary function for this particular problem as:

yc = A1(0.9) t

2) The intertemporal equilibrium or the particular solution for the model can be
computed by setting the characteristic equation to equilibrium (where ∗ denotes equilibrium
values):

Y∗ − 0.9Y∗ = 350

yp = Y∗ = 3500

Thus the general solution for the model can be expressed as:

Yt = yc + yp = A1(0.9) t + 3500     6.5

At time t=0 we have:

⇒ Y0 = A1(0.9)0 + 3500

⇒ 4000 = A1(0.9)0 + 3500

A1 = 500

Substituting A1 = 500 in (6.5) yields:



Yt = 500(0.9) t + 3500

Whether the equilibrium is dynamically stable is a question of whether or not the
complementary function will tend to zero as t → ∞. The value of b is of crucial importance
in this regard. On the other hand the arbitrary constant A only produces a scale effect
without changing the configuration of the time path. Since the characteristic root b = 0.9 or
|b| � 1 the model is convergent. The model is therefore stable as it gradually converges
towards 3500 without oscillation over time.



Tutorial 7

Consider the following model (Prof. Paul Samuelson’s (1944) classic
multiplier-accelerator model) which seeks to explore the dynamic process of
income determination. Y denotes output, C, I, and G denote consumption,
investment, and government expenditure respectively. The subscript t and t-1
refers to the respective time periods.

Yt = Ct + It + Gt

Ct = C0 + cYt−1

It = I0 + w(Ct − Ct−1 )

    7.1

    7.2

    7.3

where 0 � c � 1, w � 0, and Gt = G0.

1. Condense the model into a difference equation involving output.

2. Solve for equilibrium output.

3. Comment on the time path of output if w = 0.9 and c = 0.5.

Solution

1) In order to condense the model into a difference equation involving output, write
down the model in equilibrium form and take deviation of the model from equilibrium
(where ∗ denotes equilibrium values).

Y∗ = C∗ + I∗ + G0

C∗ = C0 + cY∗

I∗ = I0 + w(C∗ − C∗ )

    7.4

    7.5

    7.6

Model in deviation from equilibrium (denoting Yt − Y∗ = Yt for notational
convenience):

Yt = Ct + It

Ct = cYt−1

It = w(Ct − Ct−1 )

    7.7

    7.8

    7.9



Definition The backward shift or lag operator is defined by LXt = Xt−1, LnXt = Xt−n for
n = ..., −2, −1, 0, 1, 2, ..... Formally, the operator Ln maps one sequence into another
sequence.

Thus, we can re-write (7.9) by using the lag operator as;

It = w(�Ct ) = w(1 − L)Ct     7.10

Similarly we can express (7.8) as;

Ct = cYt−1 = cLYt     7.11

Substituting (7.10) and (7.11) in (7.7) yields;

Yt = cLYt + w(1 − L)cLYt

Collecting terms in Yt yields (note we are including the C which denotes the constants
omitted earlier):

⇒ Yt[1 − cL − w(1 − L)cL] = C

⇒ Yt[1 − c(1 + w)L + (wc)L2 ] = C

Yt − c(1 + w)Yt−1 + (wc)Yt−2 = C     7.12

What we have is a second-order nonhomogeneous difference equation in terms of Yt.

2) In order to solve for equilibrium output revert back to equations 7.4,7.5, and 7.6.
From 7.6 we get:

I∗ = I0     7.13

Substitute equation (7.5) in (7.4) to get;



⇒ Y∗ = C0 + cY∗ + I0 + G0

Y∗ = 1
(1 − c)

(C0 + I0 + G0 )

where 1
(1−c) is the Keynesian multiplier.

3) Substitute w = 0.9 and c = 0.5 in (7.12) to compute the time path of output.

Yt − 0.5(1 + 0.9)Yt−1 + (0.9)(0.5)Yt−2 = C

Conjecture Suppose we are seeking the solution to the first-order difference equation
Yt+1 − aYt = c where a and c are two constants. The complementary function of a
first-order difference equation yc can be expressed as yc = A1bt.

Conjecture Trying out a solution of the form yt = Abt on the second-order difference
equation yields→ Abt+2 + a1Abt+1 +a2Abt = 0 or, after cancelling out the (nonzero)
common factor Abt, we can express the higher-order difference equation
as→ b2 + a1b + a2 = 0. This quadratic equation possesses the two characteristic roots b1

and b2.

⇒ b1,b2 =
0.95 ± (−0.95)2 − 4(1)(0.45)

2
= 0.95 ± 0.90 − 1.8

2

Since b2 � 4ac we have complex or imaginary roots. In the case of a complex root we
can write the solution as:

Yt = Abt cos(θt − ε)

where

cosθ =
− 1

2 a

b = λ
=

− 1
2
(−0.95)

0.45
= 0.475

0.671
≡ 0.708

θ = cos−1(0.708) = 44.93

Note: Here a and b denote a1and a2 respectively in Chiang’s (1984, pp.513) treatment
of higher-order differential equations.

For cycles 2π
θ = 360�

θ = 360�

44.93
≡8 quarters.





Tutorial 8

Consider the following model of a closed economy. The system consists of four
equations in four endogenous variables (Ct, Yt, Tt, and It) and one exogenous variable
Gt = G0.

Yt = Ct + It + Gt

Ct = c0 + c1(Yt−1 − Tt−1 )

It = i0 + i1(Yt−1 − Yt−2 )

Tt = τYt

    8.1

    8.2

    8.3

    8.4

1. Condense the model into a difference equation involving output.

2. Solve for equilibrium output and comment on the time path of output if;

c0 = 100

i0 = 200

c1 = 0.5

i1 = 0.5

τ = 0.2

G0 = 500

Solution

1) Substituting equations (8.2), (8.3), and (8.4) in (8.1) yields:

⇒ Yt = c0 + i0 + G0 + [c1(1 − τ) + i1 ]Yt−1 − i1Yt−2

Yt − [c1(1 − τ) + i1 ]Yt−1 + i1Yt−2 = c0 + i0 + G0 ≡ C     8.5

where ‘C’ denotes all the constants collected together. Equation (8.5) is a second-order
nonhomogenous difference equation in output.

2) The particular integral or the intertemporal equilibrium of the model is given by
writing (8.5) - the characteristic equation in equilibrium form (where ∗ denotes equilibrium
values):



⇒ Y∗ − [c1(1 − τ) + i1 ]Y∗ + i1Y∗ = c0 + i0 + G0 ≡ C

Y∗ = c0 + i0 + G0

(1 − c1(1 − τ))
= 800

0.6
= 1333.33

The complementary function is given by (after substituting the values):

⇒ Yt − [0.5(1 − 0.2) + 0.5]Yt−1 + 0.5Yt−2 = c0 + i0 + G0 ≡ C

or

Yt − 0.9Yt−1 + 0.5Yt−2 = C

As explained in the previous tutorial a second-order difference equation of this form
can be expressed as a quadratic equation of the form (ax2 + bx + c). Hence, the
characteristic roots are:

⇒ b1,b2 =
0.9 ± (−0.9)2 − 4(1)(0.5)

2
= 0.9 ± 0.81 − 2

2

Since b2 � 4ac we have complex or imaginary roots. In the case of a complex root we
can write the solution as:

Yt = Abt cos(θt − ε)

where

cosθ =
− 1

2 a

b
=

− 1
2
(−0.9)

0.5
= 0.45

0.707
≡ 0.64

θ = cos−1(0.64) = 50.21

Note: Here a and b denote a1and a2 respectively in Chiang’s (1984, pp.513) treatment
of higher-order differential equations.

For cycles 2π
θ = 360�

θ = 360�

50.21 ≡7.2 quarters.



Tutorial 9

Consider the following modified version of Sargent (1987(a)) model of a closed
economy. The operator E refers to an expected value based on the information available at
time t-1. All other notations have their usual meaning.

Yt = Ct + (It − It−1) (market clearing condition)

Ct = −ΨPt (demand curve)

It = α(Et−1Pt+1 − Pt ) (inventory demand)

Yt = γEt−1Pt + ξt (supply curve)

    9.1

    9.2

    9.3

    9.4

where α, γ, and Ψ � 0. ξt represents the effects of exogenous variables on supply.
Assume perfect foresight so that Et−1Pt = Pt for all t.

1. Condense the model into a difference equation involving Pt and comment on its time
path.

Solution

1) Substitute equations (9.2), (9.3), and (9.4) in (9.1) to get the reduced form in terms of
Pt:

⇒ γPt + ξt = −ΨPt + [α(Pt+1 − Pt ) − α(Pt − Pt−1 )]

⇒ α(Pt+1 − Pt ) − α(Pt − Pt−1 ) − ΨPt − γPt = ξt

⇒ αPt+1 − (2α + Ψ + γ)Pt + αPt−1 = ξt

Dividing throughout by α yields:

Pt+1 − 2 + Ψ + γ
α Pt + Pt−1 = ξt

α

Definition A forward lag operator is defined by L−1Xt = Xt+1, L−nXt = Xt+n for n = ...,
−2, −1, 0, 1, 2, ..... Formally, the operator Ln maps one sequence into another sequence.



L−1Pt − 2 + Ψ + γ
α Pt + LPt =

ξt
α

Collecting terms in Pt and then multiplying throughout by L yields:

⇒ 1 − 2 + Ψ + γ
α L + L2 Pt =

ξt−1
α

Let 2 + Ψ+γ
α = φ. Then

[1 − φL + L2 ]Pt =
ξt−1
α     9.5

We need to factor the polynomial 1 − φL + L2 as:

[1 − φL + L2 ] = (1 − λ1L)(1 − λ2L) =
1 − λ2L −

λ1L + λ1λ2L2
    9.6

⇒ (1 − (λ1 + λ2 )L + λ1λ2L2 )

so that we need λ1 + λ2 = φ, λ1λ2 = 1.

For the second equality (λ1λ2 = 1) to hold λ2 has to be the inverse of λ1 (λ2 = 1
λ1

).

Thus we can rewrite (9.6) as:

[1 − φL + L2 ] = (1 − λL)(1 − λ−1L)

Similarly we rewrite (9.5) as:



Pt =
α−1ξt−1

[1 − φL + L2 ]
= ξt−1

α(1 − λL)(1 − λ−1L)

Thus the general solution (characteristic equation) for this second-order
nonhomogeneous difference equation can be expressed as:

Pt =
ξt−1

α(1 − λL)(1 − λ−1L)
+ A1λ t + A2

1
λ

t

where A1 and A2 are the arbitrary constants and λ (b1) and 1
λ (b2) are the characteristic

roots.

Note that

φ = 2 + Ψ+γ
α ≡ λ1 + λ2 � 2 since α, γ, and Ψ � 0.

It follows that one of our roots necessarily exceeds 1, the other necessarily is less than
1. Since, the dominant root |λ| � 1, the price level would follow an explosive
nonoscillatory path.



Tutorial 10

Consider the following illustration from Sargent (1987(a)). The operator E refers to an
expected value. All other notations have their usual meaning. Let Mt be the natural
logarithm of the money supply, Pt the log of the price level and EtPt+1 the log of the price
expected to prevail at time t+1 based on the information available at time t. The model is

Mt − Pt = α(EtPt+1 − Pt )

EtPt+1 − Pt = β(Pt − Pt−1 )
    10.1

    10.2

where α � 0 and β � 0.

1. Condense the model into a difference equation involving the price level and
determine the long-run equilibrium value of Pt once we impose the stability condition

αβ
1+αβ � 1?

2. What is the long-run equilibrium value of Pt if we assume perfect foresight? What
sort of terminal condition is necessary to rule out the occurrence of runaway inflation?

Solution

1) Substitute equation (10.2) in (10.1) to get:

Mt − Pt = αβ Pt −Pt−1     10.3

⇒ αβPt −αβLPt +Pt =Mt

⇒ (1 + αβ − αβL)Pt =Mt

Dividing throughout by 1 + αβ yields:



Pt − αβL
1 + αβ Pt ≡ Pt 1 − αβL

1 + αβ = Mt

1 + αβ     10.4

Suppose for notational convenience we call,

Pt = yt

Mt

1 + αβ = xt

αβ
1 + αβ = λ

Then we can rewrite (10.4) as:

yt = 1
1 − λL

xt = ∑
j=0

∞

λ jxt−j

Note

∑
j=0

∞

λ jxt−j = xt + λxt−1 + λ2xt−2 + ....

∑
j=0

∞

λ jxt−j = xt + λLxt + λ2L2xt + ....

∑
j=0

∞

λ jxt−j = xt(1 + λL + λ2L2 + ....)

(Summation of an infinite series)

∑
j=0

∞

λ jxt−j = xt
1

1 − λL



As a result we can write the general solution as:

⇒ Pt = 1
1 + αβ ∑

j=0

∞ αβ
1 + αβ

j

Mt−j + Abt

Pt = 1
1 + αβ ∑

j=0

∞ αβ
1 + αβ

j

Mt−j + A
αβ

1 + αβ

t

    10.5

where A is the arbitrary constant and b is the characteristic root. Consequently, this is
the general solution (characteristic equation) which describes the entire time path of the
price level given the time path of M.

In order to arrive at the particular solution we must set the model to equilibrium and
solve for P∗ which denotes equilibrium price level. So we can write (10.5) as:

P∗ = 1
1 + αβ ∑

j=0

∞ αβ
1 + αβ

j

M∗ + A
αβ

1 + αβ

t

Since αβ
1+αβ � 1, the second term in our particular solution tends to zero as time tends

to infinity.

t→∞
lim

αβ
1 + αβ

t

→ 0

Hence we can write our particular solution as

⇒ P∗ = M∗

1 + αβ 1 + αβ
1 + αβ + αβ

1 + αβ

2

+ ...

P∗ = M∗

1 + αβ
1

1 − αβ
1+αβ

= M∗

Thus, the long-run effect of a once-and-for-all jump in money supply is to drive the



price level up by an equal amount (provided the above stability condition is met).

2) If we assume perfect foresight then the money demand function becomes:

Mt − Pt = α Pt+1 −Pt

⇒ αPt+1 −αPt + Pt = Mt

⇒ [αL−1 + (1 − α)]Pt = Mt

Dividing throughout by αL−1 yields:

⇒ 1 + 1 − α
αL−1 Pt = Mt

αL−1

⇒ 1 − (α − 1)
αL−1 Pt = Mt−1

α

or

Pt = Mt−1
α × 1

1 − (α−1)
αL−1

Thus we can write the general solution as:

Pt= 1
α ∑

j=0

∞
α − 1
α

j
Mt−j + A α − 1

α
t

    10.6

In order to arrive at the particular solution we must set the model to equilibrium and
solve for P∗ which denotes equilibrium price level. So we can write (10.6) as:

P∗= 1
α ∑

j=0

∞
α − 1
α

j
M∗ + A α − 1

α
t



Note that

1
α ∑

j=0

∞
α − 1
α

j
M∗ = M∗

P∗=M∗ + A α − 1
α

t

However, since ( α−1
α ) � 1 as α � 0 the second term i.e., A( α−1

α ) t would be explosive.
We would therefore require that A = 0 (terminal condition) in order to rule out a bubble.



Tutorial 11

Consider the following model of a closed economy. π denotes the inflation rate, u
denotes the unemployment rate, and m is the growth of money stock. Treat α as exogenous.
The superscript e refers to an expected value. The subscripts t and t+1 refers to the
respective time periods.

π t = α − βut + γπ t
e α,β � 0, 0 � γ � 1

π t+1
e = π t

e + λ(π t − π t
e ) 0 � λ � 1

ut+1 = ut − δ(m − π t+1 ) δ � 0

1. Condense the model into a difference equation involving

(i) the inflation rate,
(ii) the unemployment rate.

2. Solve for
(i) the equilibrium inflation rate,
(ii) the unemployment rate.

3. If α = 20, β = 10, γ = 1
2 , λ = 1

3 , δ = 1
2 ;

find the time path of the inflation rate.

4. Comment on the time path of the rate of inflation if γ = λ = 1.

Solution

1) Expressing the model in equilibrium (where ∗ denotes equilibrium value):

π∗ = α − βu∗ + γπe∗

πe∗ = πe∗ + λ(π∗ − πe∗ )

u∗ = u∗ + δ(m − π∗)

    11.1

    11.2

    11.3



Model in deviation from equilibrium (denoting π t − π∗ = π t for notational
convenience):

π t = −βut + γπ t
e

π t+1
e = π t

e + λ(π t − π t
e )

ut+1 = ut + δπ t+1

    11.4

    11.5

    11.6

Using the lag operator we can simplify equations (11.5) and (11.6) as follows:

⇒ L−1π t
e = π t

e + λπ t − λπ t
e

⇒ L−1 − 1 + λ π t
e = λπ t

π t
e = λπ t

L−1 − 1 + λ
≡ λLπ t

[1 − L(1 − λ)]
    11.7

⇒ L−1ut = ut + δL−1π t

⇒ (L−1 − 1)ut = δL−1π t

ut = δL−1π t

(L−1 − 1)
≡ δπ t

(1 − L)
    11.8

Substituting (11.7) and (11.8) in (11.4) yields:

⇒ π t = −β δπ t

(1 − L)
+ γ λLπ t

[1 − L(1 − λ)]

Collecting terms in π t yields:

⇒ π t

(1 + βδ) + (−1 + λ − 1 − βδ + βδλ − γλ)L +
(1 − λ + γλ)L2

= 0



(1 + βδ)π t + (−2 + λ − βδ + βδλ − γλ)π t−1 + (1 − λ + γλ)π t−2 = 0

Note that by writing down the model in deviation form we have successfully omitted
the constants i.e., α and m. We can now add the constants to the second-order difference
equation in π.

(1 + βδ)π t + (−2 + λ − βδ + βδλ − γλ)π t−1 + (1 − λ + γλ)π t−2 = C     11.9

where C denotes the omitted constants.

ΘFor a second-order difference equation the solution for the complementary function
can be written as πc = A1(b1 ) t + A2(b2 ) t where A1 and A2 are the arbitrary constants and
b1 and b2 are the characteristic roots. As we have seen already, a second-order difference
equation can be represented as a quadratic equation and its roots can be computed by
applying the quadratic formula,

b1,b2 = −b ± b2 − 4ac
2a

If (b2 � 4ac) we have real roots. On the otherhand if (b2 � 4ac) we have complex
roots.

In the case of complex roots we can write the solution simply as

π t = Aλ t cos(θt − ε)

where cosθ =
− 1

2
a

b =λ
.

where λ is the dampening factor.

θ = cos−1
− 1

2 a

b = λ
.



In order to obtain a difference equation in terms of the unemployment rate go back to
equation (11.8):

ut = δπ t

(1 − L)

or

π t =
ut(1 − L)

δ     11.10

Substitute (11.10) in (11.9) for π t, π t−1 etc to obtain a second-order nonhomogenous
difference equation in terms of the unemployment rate.

2(i) For equilibrium inflation rate go back to equation (11.3). Note that m − π∗ = 0 that
is, equilibrium inflation is equal to the growth in money supply.

2(ii) For equilibrium unemployment rate go to equation (11.2). From equation (11.2)
we know that πe∗ = π∗. Substituting this in equation (11.1) yields:

u∗ = α − (1 − γ)π∗

β

When γ = 1, we have u∗ = α
β . That is the long-run aggregate supply or the Phillips

curve is vertical.

3. Substituting the given values in equation (11.9) (ignoring the constant term for
simplicity) yields:

1 + 10 × 1
2

π t + −2 + 1
3

− 10 × 1
2

+ 10 × 1
2

× 1
3

− 1
2

× 1
3

π t−1

+ 1 − 1
3

1 − 1
2

π t−2 = 0

or



6π t − 31
6

π t−1 + 5
6
π t−2 = 0

Dividing throughout by 6 yields:

π t − 0.86π t−1 + 0.14π t−2 = 0

Therefore the roots of this quadratic equation are:

b1,b2 = 0.86 ± 0.74 − 0.56
2

b1 = 0.22 and b2 = 0.64

Since, (b2 � 4ac) we have real roots. Thus the complementary function is given by
πc = A1(0.22) t + A2(0.64) t where b2 is the dominant root. As t → ∞ this model converges
in the form of a step function.

4. Substituting the given values in equation (11.9) (ignoring the constant term for
simplicity) yields:

⇒ 6π t − 2π t−1 + π t−2 = 0

Dividing throughout by 6 yields:

π t − 0.33π t−1 + 0.17π t−2 = 0

b1,b2 = 0.33 ± 0.11 − 0.68
2

Since, (b2 � 4ac) we have complex roots.

In the case of complex roots we can write the solution simply as:



π t = Aλ t cos(θt − ε)

where cosθ =
− 1

2
(−0.33)

0.17
= 0.42

Note: Here a and b denote a1and a2 respectively in Chiang’s (1984, pp.513) treatment
of higher-order differential equations.

θ = cos−1(0.42) ≡ 65.17

For cycles 360�

65.17 = 5.5 quarters (provided the model is a quarterly model).



Tutorial 12

Consider the following model of a closed economy. p denotes the price level, x denotes
output, and ∆m is the growth of money stock. The superscript e refers to an expected value.
The subscripts t and t-1 refers to the respective time periods.

∆pt = axt−1 + ∆pt−1
e

∆pt
e = λ∆pt + (1 − λ)∆pt−1

e

∆xt = δ(∆m − ∆pt )

1. Condense the model into a difference equation involving
(i) the price level,
(ii) full-employment output.

2. Solve for
(i) the equilibrium price level,
(ii) the equilibrium output.

3. If a = 0.2, λ = 0.2, δ = 0.1;
find the time path of the price level.

4. Comment on the time path of the price level if λ = 1.

Solution

1) Expressing the model in equilibrium (where ∗ denotes equilibrium value);

∆p∗ = ax∗ + ∆pe∗

∆pe∗ = λ∆p∗ + (1 − λ)∆pe∗

∆x∗ = δ(∆m − ∆p∗ )

    12.1

    12.2

    12.3

Model in deviation from equilibrium (denoting π t − π∗ = π t for notational
convenience):



∆pt = axt−1 + ∆pt−1
e

∆pt
e = λ∆pt + (1 − λ)∆pt−1

e

∆xt = −δ∆pt

    12.4

    12.5

    12.6

Using the lag operator we can simplify equations (12.5) and (12.6) as follows:

⇒ (1 − L)pt
e = λ(1 − L)pt + (1 − λ)Lpt

e(1 − L)

⇒ pt
e[1 − (1 − λ)L] = λpt

pt
e = λpt

[1 − (1 − λ)L]
    12.7

⇒ (1 − L)xt = −δ(1 − L)pt

xt = −δpt     12.8

Substituting (12.7) and (12.8) in (12.4) yields:

⇒ (1 − L)pt = aL(−δpt ) + L λpt

[1 − (1 − λ)L]
(1 − L)

(1 − L + λL − L + L2 − λL2 )pt = −aδptL + aδL2pt − aδptλL2

+ Lλpt − λptL2

Collecting terms in pt yields:

⇒ pt
1 − L + λL − L + L2 − λL2 + aδL − aδL2 + aδλL2 −

Lλ + λL2
= C

pt − [2 − aδ]pt−1 + [1 − aδ(1 − λ)]pt−2 = C     12.9

where C denotes the omitted constants.



In order to obtain a difference equation in terms of output go back to equation (12.8):

xt = −δpt

or

pt = − 1
δ xt     12.10

Substitute (12.10) in (12.9) for pt, pt−1 etc to obtain a second-order nonhomogenous
difference equation in terms of output.

2) In order to compute equilibrium output go to equation (12.2);

∆pe∗ = λ∆p∗ + (1 − λ)∆pe∗

⇒ ∆pe∗[1 − (1 − λ)] = λ∆p∗

∆pe∗ = ∆p∗

Substitute this in (12.1) to get equilibrium output:

x∗ = 0

Substitute the value of equilibrium output in (12.3) to get equilibrium price level:

∆m = ∆p∗

3. Substituting the given values in equation (12.9) (ignoring the constant term for
simplicity) yields:



⇒ pt − [2 − (0.2)(0.1)]pt−1 + [1 − (0.2)(0.1)(1 − 0.2)]pt−2 = 0

or

pt − 1.98pt−1 + 0.984pt−2 = 0

Therefore the roots of this quadratic equation are;

b1,b2 = 1.98 ± 3.92 − 3.94
2

Since (b2 � 4ac) we have complex roots.

In the case of complex roots we can write the solution simply as:

pt = Aλ t cos(θt − ε)

where cosθ =
− 1

2
(−1.98)

0.984
= 0.998

θ = cos−1(0.998) ≡ 3.62

For cycles 360�

3.62 = 99 quarters (provided the model is a quarterly model).

4. Substituting the given values in equation (12.9) (ignoring the constant term for
simplicity) yields:

pt − 1.98pt−1 + pt−2 = 0

b1,b2 = 1.98 ± 3.92 − 4
2



Since (b2 � 4ac) we have complex roots.

In the case of complex roots we can write the solution simply as

pt = Aλ t cos(θt − ε)

where cosθ =
− 1

2
(−1.98)

1
= 0.99

θ = cos−1(0.99) ≡ 8.11

For cycles 360�

8.11 = 44 quarters (provided the model is a quarterly model).



Tutorial 13

Consider the following Neo-Classical/Keynesian Synthesis model where notations have
their usual meaning.

yt = −αrt + d IS curve

m = pt + γyt − βRt LM curve

pt
� = pt

�e + δ(yt − y∗ ) Phillips curve

∆pt
�e = λ(pt−1

� − pt−1
�e ) Adaptive expectations

Rt = rt + pt+1
�e Fisher equation

    13.1

    13.2

    13.3

    13.4

    13.5

where xt
� = ∆xt = xt − xt−1.

1.Condense the model into a difference equation involving the price level.

2. If α = 0.5, β = 3, δ = 0.2, γ = 1, and λ = 0.1; find the time path of the price level.

Solution

1) Expressing the model in equilibrium (where ∗ denotes equilibrium value):

y∗ = −αr∗ + d

m = p∗ + γy∗ − βR∗

p�∗ = p�e∗ + δ(y∗ − y∗ )

∆p�e∗ = λ p∗ − p�e∗

R∗ = r∗ + p�e∗

    13.6

    13.7

    13.8

    13.9

    13.10

Model in deviation from equilibrium (denoting yt − y∗ = yt for notational convenience):



yt = −αrt

0 = pt + γyt − βRt

pt
� = pt

�e + δyt

∆pt
�e = λ(pt−1

� − pt−1
�e )

Rt = rt + pt+1
�e

    13.11

    13.12

    13.13

    13.14

    13.15

Using the lag operator we can simplify equations (13.14) as follows:

(1 − L)pt
�e = λLpt

� − λLpt
�e

pt
�e = λLpt

�

(1 − L + λL)
≡ λLpt

�

(1 − (1 − λ)L)
    13.16

Substituting (13.16) in (13.13) yields:

⇒ pt
� = λLpt

�

(1 − (1 − λ)L)
+ δyt

Multiplying throughout by (1 − (1 − λ)L) yields:

⇒ pt
�[1 − L] = δyt[1 − (1 − λ)L]

yt =
pt
�[1 − L]

δ[1 − (1 − λ)L]
    13.17

From (13.11) we get:

rt = − yt
α     13.18

Substituting (13.16) and (13.18) in (13.15) yields:

Rt = − yt
α + L−1 λLpt

�

(1 − (1 − λ)L)
    13.19

Substituting (13.19) and (13.17) in (13.12) yields:



0 = pt + γyt − β − yt
α + L−1 λLpt

�

(1 − (1 − λ)L)

0 = pt + γ + β
α yt −

βλ pt
�

(1 − (1 − λ)L)

0 = pt + γ + β
α

pt
�[1 − L]

δ[1 − (1 − λ)L]
− βλ pt

�

(1 − (1 − λ)L)

Note that pt
� = pt − pt−1 = (1 − L)pt:

0 = pt + γ + β
α

[1 − L]2pt

δ[1 − (1 − λ)L]
− βλ (1 − L)pt

(1 − (1 − λ)L)

Multiplying throughout by [1 − (1 − λ)L] yields:

0 = pt(1 − (1 − λ)L) + [1 − L]2 γα + β
αδ pt − pt(1 − L)βλ

Collecting terms in pt yields a second-order nonhomogenous difference equation.

1 + γα + β
αδ − βλ pt + −1 + λ − 2

γα + β
αδ + βλ pt−1

+ γα + β
αδ pt−2 = C

where C denotes the omitted constants.

2) Substituting the given values above ( ignoring the constant term for simplicity)
yields:



1 + 1(0.5) + 3
0.5(0.2)

− 3(0.1) pt +

−1 + 0.1 − 2
1(0.5) + 3
0.5(0.2)

+ 3(0.1) pt−1 +

1(0.5) + 3
0.5(0.2)

pt−2 = 0

⇒ 35.7pt − 70.6pt−1 + 35pt−2 = 0

Dividing throughout by 35.7 yields:

pt − 1.978pt−1 + 0.98pt−2 = 0

Therefore the roots of this quadratic equation are:

b1,b2 = 1.978 ± 3.912 − 3.92
2

Since, (b2 � 4ac) we have complex roots.

In the case of complex roots we can write the solution simply as

pt = Aλ t cos(θt − ε)

where cosθ =
− 1

2
(−1.978)

0.98
= 0.999

θ = cos−1(0.999) ≡ 2.56

For cycles 360�

2.56 = 141 quarters (provided the model is a quarterly model).


