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Skewness and Kurtosis Ratio Tests: With Applications
to Multiperiod Tail Risk Analysis

Abstract

This article extends the variance ratio test of Lo and MacKinlay (1988) to tests
of skewness and kurtosis ratios. The proposed tests are based on generalized methods
of moments. In particular, overlapping observations are used and their dependencies
(under the IID assumption) are explicitly modelled so that more information can be
used in order to make the tests more powerful with better size properties. The proposed
tests are particularly relevant to the risk management industry where risk models are
estimated using daily data, although multi-period forecasts of tail risks are required for
the determination of risk capital. Applications of the tests find significant higher-order
nonlinear dependencies in global major equity markets. Failure to correctly model such
nonlinear relationships is likely to have a negative impact on the accuracy of forecasts
of multi-period tail risks.

Keywords: Skewness, kurtosis, overlapping observations, mutiperiod tail risk, Value-
at-Risk

JEL Classification: C10, G11

1 Introduction

The financial crisis of 2008 has highlighted the importance of banks having sufficient capital
for their trading activities. For example, if an internal risk model is used, Basel II stipulates
that the market risk capital for a bank’s trading portfolio should be determined by Value-
at-Risk (VaR) over a 10-day horizon.! Since VaR is estimated using daily returns, the Basle
Committee sanctions the use of a scaling law based on the variance ratio relation, i.e., the
10-day VaR is approximated as v/10 x 1-day VaR. This scaling law is clearly far from perfect
since Lo and MacKinlay (1988) show that the variance ratio relationship does not hold for
stock market returns.

Most risk models forecast tail risks by focusing on two main components, namely, the
volatility process and the distribution function of the shocks (see for example Hsieh (1993)
and Wong (2010)). While popular diagnostic tests for risk models often require that the

! According to Basel II, the required market risk capital on trading day ¢ is determined as the larger of
the 10-day VaR;_; and the M x average of past 60 days of 10-day VaR’s, where M is the multiplication
factor the value of which lies between 3 and 4.



shocks and their squares are not autocorrelated, it is desirable to test for higher order de-
pendence for two reasons. Firstly, financial returns are highly non-normal and the severity of
tail risk is closely associated with higher order measures such as skewness and kurtosis. Sec-
ondly, due to the so-called intervaling effects on skewness and kurtosis (Hawawini, 1980; Lau
and Wingender, 1989), the scaling law would give rise to sub-optimal multi-period forecasts
of tail risks.

This article extends the variance ratio test of Lo and MacKinlay (1988) to tests of skew-
ness and kurtosis ratios. Specifically, under the IID (independently and identically distrib-
uted) assumption, the ratios of skewness and kurtosis of single-period returns to those of
h-period returns are vh and h, respectively. Therefore, for example, if the h-period skew-
ness is significantly more negative than h~/? times the single-period skewness, multi-period
forecasts of tail risk based on the IID assumption would likely to be over-optimistic.

One challenge to the proposed ratio tests is that it entails the use of higher-order statistics,
which are associated with large estimation errors. In risk management, the problem is
exacerbated by the requirement that tail risks be measured implicitly in a multi-period
context for the purpose of risk capital determination, which results in fewer observations
for risk modelling and statistical tests if non-overlapping returns are used. In order to
alleviate these problems, this paper adopts the Generalized Method of Moments (GMM)
used by Richardson and Smith (1991) in which overlapping observations are used and their
dependencies under the IID assumption are explicitly modelled. Such an approach fully
utilizes the information from the data, and thus able to provide more powerful tests. Since
the higher-order ratio tests assume the existence of moments up to the eighth order, a
simulation study is carried out to investigate the robustness of the proposed tests against
moment condition failure. In comparison to the widely used nonlinearity test proposed by
McLeod and Li (1983), the proposed ratio tests are shown to have better size properties.

In this paper, a study of multiperiod tail risks for global major equity markets is carried
out. The applications of the proposed tests find signs of higher-order nonlinear dependence
present in the stock returns, suggesting that the scaling-law approach to forecasting multi-
period tail risks would be sub-optimal. Moreover, it is noted that in several cases the risk
models studied pass the widely used Ljung-Box test of autocorrelation and the McLeod-Li
nonlinearity test but fail the proposed skewness-kurtosis ratio tests.

The rest of the paper is organized as follows. Section 2 introduces some preliminary sta-
tistical properties that are useful for the derivation of the analytical results of the skewness
and kurtosis ratio tests in Section 3. The next section investigates the robustness of the pro-
posed ratio tests against moment condition failure. The empirical results of the application

of the proposed tests to global equity markets are reported in Section 5. Finally, a summary



is provided in Section 6.

2 Some preliminaries

2.1 Cumulants

In this paper, the analyses and results are presented in terms of cumulants. Formally, the p-th
order joint cumulant of p-variate random variable (v, . ..,y,), denoted as cum(y, ..., y,), is
defined as the coefficient of i"¢; - - - £, in the Taylor series expansion of the natural logarithm
of E[exp (z > yjtjﬂ. For the special case y; = vy, j = 1,...,p, cum(y1, y2,...,¥p) 1S
simply the p-th order cumulant of y. Note that cum(y) = E(y) and cum(y, y) = var(y).?

Listed below are some properties that motivate the use of cumulants in the subsequent

analyses.
Lemma 1 Let z; and vy, ..., y, be random variables whose joint cumulant exists. Then
1. cum(y,...,¥y,) is symmetric in its argument.

2. cum(y; + 21,92, - - -, Yn) = cum(y, Y2, - - -, Yn) + cum(zy, y2, - - ., Yn) -
3. If any of y1,...,y, is independent of the remaining 3’s, cum(yy,...,y,) = 0.
4. If a is a constant, cum(a, yy, ..., y,) = 0.

5. If ay,...,a, are constants, cum(aiyi, ..., aYn) = a1 - apeum(yy, . . ., Yn)-

2.2 Higher-order ratio relations

We shall now proceed to obtain the higher-order ratio relations based on which the proposed
tests are formulated. Consider the log returns (r;) of prices (P;), with the former defined as
Ty = In (Pt/Ptfl)- Now deﬁne

Tt =Ti—hy1 T Ty

as the associated h-period return at . From now onwards, as in 7, we use ‘7’ to denote that

3

the variable of interest is of h-period. For simplicity, A is suppressed in all multiperiod
variables in this paper. Lo and MacKinlay (1988) made use of the fact that if r, is IID, the

stock price returns should pass the variance ratio test, i.e. the relationship

var (1) = hvar (ry) (1)

2The appendix at the end of the paper provides further relations between higher order central moments
and cumulants.



holds. The variance ratio relation can now be easily extended to higher orders in terms of
cumulants, as follows. Under the IID assumption of r;, by virtue of properties 2 and 3 of

Lemma 1,

Kp = htp, (2)

where %, and k,, are the p-th order cumulant of r; and r, respectively. The result in (2) forms
the basis for the higher-order ratio tests studied in this paper. If p = 2, (2) reduces to (1),
as the second order cumulant is simply the variance.

Since skewness and kurtosis are now widely used, it is useful to relate the result of (2) to
the two statistics. Let 02, p; and p, be the variance, skewness and kurtosis of 7; respectively.

Then under the IID assumption,

~ _ Ry _ homg 1 (3)
P3 = 5_13 - h3/2 o3 - \/Epib

~ 7{4 h K4 1

Ps = g = 2ot = EP4- (4)

That is, as the holding interval h increases, ps; and p, decline at a rate of h~'/2 and h™"
respectively. This is the so-called intervalling effect on skewness and kurtosis that were
studied by Hawawini (1980) and Lau and Wingender (1989).

Before we proceed to derive the required tests, it is worthwhile considering the following
example to illustrate why the higher order relations may not hold. Consider, for example,
the two-period overlapping observations r; = r,_; + ;. By virtue of Lemma 1 above, the

third order cumulant of 7; is

cum (74,74, 7)) = cum (ry_1,71,71) + cum (ry, 74, 74)
+3cum (ry_1,741,7¢) + 3cum (ry_1, 74, 1¢)

Ry = 2k3+3cum (141,77 1,7¢) + dcum (ry_q1, 7, 7). (5)

So testing k3 = 2k3 is equivalent to testing cum(r,_1, 7,1, 1) + cum(ry_q, 7, 7;) = 0. That is,
if higher order intertemporal dependence exists between r,_; and r;, skewness ratio relation
does not hold.

Now, suppose r; follows an AR(1) process:
re=m+ar,1+ e (6)

where m and a are constants and the innovation e; is an IID random variable which has a



finite non-zero third order cumulant or moment. Then by virtue of properties of Lemma 1,
cum (ry_1,74-1,7¢) = a-cum (ry_1,7-1,7—1) = a - kK3 # 0. (7)

Thus, autocorrelation in r; would also result in the rejection of the skewness ratio relation;
similar arguments also apply to the kurtosis ratio test. In short, both linear and nonlinear

dependence could render the higher-order relation in (2) invalid.

3 Higher-order ratio tests

Richardson and Smith (1991) proposed a GMM approach for the variance ratio test, using
(1) as a restriction in the sample moment conditions. A major contribution by Richardson
and Smith is the use of analytically derived weighting matrices in the presence of overlapping
returns for the GMM test. By explicitly modeling the dependencies of overlapping observa-
tions, the approach uses more information from the data and thus enjoys higher test powers
and better size properties. This section extends Richardson and Smith’s GMM approach to

the skewness and kurtosis ratio tests.

3.1 GMM test

To apply the GMM test procedure, for each time t we construct an R-vector f; (ry,7y,0)
where 0 is a P-vector of unknown parameters, namely u, o and &;, to be determined. Each
element of f; (-) corresponds to a restriction, at least one of which is attributed to the higher

. . . . . . . ~ T
order-ratio relation given in (2). Given the time series {r,, 7 },_;,

g1 (0) = 73 i () (8)

tends to zero as T' tends to infinity if the higher order-ratio relation holds. The idea behind
the GMM approach is to obtain the estimator  such that it has a minimum variance-
covariance matrix. Hansen (1982) showed that this can be achieved by solving the system

of equations

DSy tgr (0) = 0, (9)



where

D, = E{agge(e)]’ (10)
So = D> E[f()fi()]. (11)
l=—00

It can be shown that under the null hypothesis,

VT (5 _ 9) . N (0, [Dgs(;lpo}‘l) , (12)
Tgr @/ Sotgr @ — Xh_ps (13)

where R > P. One reason for the popularity of the GMM approach lies in its validity
when Dy and S, are replaced by their consistent estimators, denoted respectively as Drp
and Sp. In particular, the St is often calculated by the two-step procedure of Hansen
and Singleton (1982) or the Newey and West (1987) approach, which guarantees a positive
definite weighting matrix based on sample estimates of (8).

A contribution of this article is to derive analytically, under the IID assumption, the
matrix Sy (-) when overlapping observations are used. As Richardson and Smith (1991) have
demonstrated for the variance ratio test, this approach uses more information from the data
and yields desirable results such as higher test powers and better size properties. As can
be seen in the following section, using an analytically derived Sy reduces the problem to

estimating only the required cumulants.

3.2 Skewness ratio test

For the skewness ratio test, f; and Dy are

Ty — b —1 0
fi= (ry — /~b)3 — K3 , Do = 302 -1 |, (14)
(7, — hp)® — hks —3h%0? —h

with R = 3 and P = 2. Note that # = (i x3)". To derive the required variance-covariance
matrix Sy, consider for example the covariance between the second and last elements of f;

in (14), i.e. cov((r; — p)* — ks, (7, — hu)® — hks). Since k3 is non-stochastic, by virtue of the



properties in Lemma 1, the required covariance is simply cum(z?, 73) where

Ty = Tt — My (15)

; ; 0 3 53 ; 3,3
So, the associated element of Sy is > ;° _cum(zf, Z7_,), which can be denoted as S1p, Where

the superscripts refer to the powers of random variables and the subscripts to the periods
over which the returns are measured. Using the same notation, the required covariance

matrix can be written as
1,1 1,3 13
S11 S11 S1a
S 31 33 33
0= | S11 S11 Sia
31 33 33
Sp1 Sh1 Shh

Exploiting the overlapping dependencies and the IID assumption, the elements of S, are

derived in the Appendix as:?

o= o an
ho= hlmranet], 1
s = B [se + (3h +12) ka0 + 93 + (9h + 6) 0% | (19)
Sy% = B2+ [6h° +944] Kao® + 9AuKE + [9h* + 61, ] o, (20)

where A, = h(2h? +1) /3 and B, = h*(h? + 1) /2. Note that if h = 1, A, = B, = 1 and
(18) reduce to si:i’, whereas both (19) and (20) simplify to s‘;’j‘;’.

3.3 Kurtosis ratio test

For the kurtosis ratio test, the corrsponding f; and D, are

Ty — b —1 0 0
(ry — p)* — o2 0 -1 0
fi= Ve , Do=1| s L @)
(ry — )" —30* — Ky 4ks 60 1
(7, — hp)* — 3h20* — hry —4h%k3 —6h%0% —h

3The proofs in the Appendix for the analytical results of covariance matrices Sy are made simpler using
x; and Z; rather than r; and 7;, as the former has zero mean.



Here, R=4, P=3and § = (1 0> k). Using the same notation as in the skewness ratio

test, the associated weighting matrix is given by

where the required covariances are derived in the Appendix as

1,2
S1,1

2,2
S1,1

Si.h
S1,h

4,4
S1,h

4.4
Sh.h

1,1
S11

21

1,1

So = 4,1
S1,1

4,1

Sh1

R3,
Kka + 204,

h [/’65 + 10h/€302} y

h [ke + (6h + 8) kyo” + (4h + 6) k3 + 12ho°]
hiig + (6h + 22) ko? + (4h + 52) kska + 34k
+ (84h + 120) k40 + (100 + 180) &
Wks + [12h% 4+ 164, keo® + [8h* + 48A}] Ksks + 34A)K]

+ [36h* + 96hA, + T2By| kao* + [64R* + T2hA), + 144B,,] k30?
+ [T2R* Ay, + 24Cy ] 0°.

o + (T2h + 24) 0®,

(27)

In (27), Cy = h(6h* + 10h? — 1) /15. Similar to the case of the skewness ratio test, when

h=1,C, =1, (24) yields sif, (25) yields s%f and both (26) and (27) simplify to 8113411.

3.4 Joint skewness and kurtosis ratio test

We also consider a joint test based on both skewness and kurtosis relations, for the two

statistics are often used together as a joint statistic (see for example the Jarque and Bera

(1980) test for normality). For the case of a joint skewness and kurtosis ratio test, we have

fi=

(e — M)z -0
(re — M)3 — ks
(r — p)* — 30* — Ky
(7o — hp)® = hiss
| (7 — hp)*t = 3h%0* — iy

Ty — |

4

—4h%k3 —6h%0?

(28)



with R=6, P=4and § = (1 0> ks r4). The covariance matrix is

[ 11 1,2 1,3 1,4 1,3 1,4 ]
S11 511 S11 S11 Sih Sin
2,3 24
S11 511 S11 S11 Stn Sia
Sl B2 B33 34 33 34
1,1 S11 S11 S11 S1ih Sin
So 41 42 43 44 43 44 | (29)
S11 511 S11 S11 Sih Sin
3,3 34
Sh1 Sha Sk Sk Shh Sk
41 42 43 44 43 44
Sp1 Sma Shi Sha Swhh Shh

Most of the elements of Sy in (29) have been provided in the above. The remaining required

covariance elements are (see the Appendix for proofs)

2% = D[k + (3h+6) rs0?] (30)
sih = h[ky+ (3h+ 18) kso® + 3dratsy + (30h + 72) Kzo®] (31)
sih = h[rr+ (6h+15) k50” + (4h + 30) Kakis + (66h + 36) r30”] | (32)
52:‘2 = K’ry+ [90® +12A4] k50° + [4R° + 30A}] Kaks

+ [30h* + 36hA), + 36B,] Ko, (33)

Again, setting h = 1 reduces (30) to sf‘;’ whereas (31), (32) and (33) become si’f.

4 A simulation study of size properties

For the analytical results in the above section to hold, the moments of r; up to eighth order
need to exist (up to the sixth order for the skewness ratio test). The study by Loretan
and Phillips (1994) suggests that fourth and higher order moments of a financial time series
may not exist. Moreover, based on simulation experiments, de Lima (1997) finds that tests
designed to have maximum power against misspecification of second or higher moments are
sensitive to their nonexistence.

This section uses Monte Carlo simulations to investigate the robustness of the proposed
tests when the required higher-order moments do not exist. As a benchmark for comparison,
the McLeod and Li (1983) test based on squared-residual autocorrelations is also considered,
for the test is not only widely used as a diagnostic check for risk models such as GARCH,
but is also studied extensively for its robustness against moment condition failure in de Lima
(1997).

Distributions that meet the moment condition of the proposed tests are considered first.
Specifically, IID random data of sizes 250, 500 and 1000 that are distributed as standard



normal and Student’s ¢ with 9 degrees of freedom are generated and subject to the skewness-
kurtosis ratio tests, as well as to the McLeod and Li test.* Empirical test sizes are then
calculated as the number of rejections of null hypothesis at a given significance level by
5,000 replications in each simulation experiment. Table 1 provides the calculated test sizes
at 10%, 5% and 1% levels for h equals 5, 10 and 20 periods. McLi refers to the McLeod and
Li test whereas Skew, Kurt and Joint are respectively the skewness, kurtosis and their joint
ratio tests. Broadly speaking, the empirical test sizes are fairly close to their theoretical
values. Closer observation finds that the higher-order ratio tests are generally under-sized at
10% and 5% levels, with noticeable improvements as the sample size increases. At a 1% level,
the proposed tests tend to be mildly over-sized, with the joint skewness and kurtosis test
most severe at 2.20% when N = 500 and A = 20. While the McLeod and Li test exhibits
less under-sized tendencies at 10% and 5% levels, its over-sized problem at a 1% level is
more severe for all values of N and h when we move from normal distribution to Student ¢

distribution.
< Table 1 Empirical test sizes: all required moments exist >

Table 2 provides the empirical test sizes when the moment condition fails. Specifically,
the IID random data are now generated from two Student’s ¢-distributions with 3 and 5
degrees of freedom, which correspond to the existence of moments up to the second and
fourth orders respectively. In the case of the skewness-kurtosis ratio tests, the under-sized
tendency worsens noticeably at a 10% level and to a much smaller extent at a 5% level.
Interestingly at a 1% level, the empirical test sizes remain broadly similar to those in Table
1 when the moment condition holds. For the McLeod and Li test, the over-sized problems
are progressively more severe as the test size level moves from 5% to 1% and when a more

heavy-tailed distribution is encountered.
< Table 2 Empirical test sizes: moment condition fails >

To sum up the above simulation study, the proposed higher order-ratio tests are robust
against violations of moment conditions. At conventional significance levels, while it is under-
sized at a 5% level and over-sized at a 1% level, the deviations from theoretical values are
small, when compared with the widely used McLeod and Li test. The good size property
and robustness against moment condition failure is important as empirical evidence suggests

that higher-order moments of a financial time series may not exist.

4Student’s ¢ distribution with v degrees of freedom has finite moments up to the (v — 1)-th order.

10



5 A study of multiperiod tail risk

This section illustrates the usefulness of higher-order ratio tests when we investigate multi-
period tail risks in global equity markets. Specifically, large and small capitalization stock
index returns of four major economies are considered. Applications of the proposed tests
confirm the presence of higher order dependence in these markets. No attempt is made to
identify the best risk models in terms of goodness of fit, forecast, or ability to pass diag-
nostic tests. Only the results of a simple GARCH model with normal shocks are reported,
for the aim here is to illustrate the complementary role of the proposed higher-order ratio
tests. Indeed, there are many cases in which the GARCH-filtered returns (which are sup-
posedly IID shocks) pass the McLeod and Li (1983) nonlinearity test but fail the skewness
and kurtosis ratio tests. Evidence of the association of tail risks with skewness and kurtosis
is also provided, implying that the forecasts of multiperiod tail risks could be sub-optimal if
nonlinear dependence is not appropriately taken into account. In this sense, the information
conveyed by the higher-order properties of single- and multi-period stock returns can shed

light on the nature of the nonlinearities present in the financial returns.

5.1 Data and descriptive statistics

Large and small capitalization stock indexes from the US, UK, Germany and Japan are
studied. Log returns are calculated and each time series of returns comprises about 2,500
observations starting from 2 January 2006 to 31 December 2015.> Table 3 provides the
information on the number of observations, standard deviation (sd), skewness (sk) and
kurtosis (ku) over the single- and multi-period horizons (h = 5, 10). Note that these statistics
are adjusted for intervalling effects so that their expected values would remain constant for
different values of h should the ratio relations hold. This is achieved by setting sd = h=/%7,
sk = h'/?p, and ku = hp,.

< Table 3 Basic statistics >

It can be seen from the table that, as h increases both large- and small-capitalization
stock indexes are increasingly more left-skewed and leptokurtic than would be the case if the
returns were 1ID. To illustrate the relationship between tail risk and higer-order statistics,
Figure 1 depicts, for the case of daily returns, how the value-at-risk of the eight stock indexes

varies with its associated skewness and kurtosis. To control for the difference in dispersion

®Only trading-day returns are used in our study. While the number of observations is the same for both
large and small capitalization stock indexes in each country, it varies from country to country for the period
studied.

11



of each time series, the reported 99% VaR is obtained by dividing the first percentile of each
time series of returns by the associated standard deviation. Scatter plot A and B are based
on the 10-year sample studied in this article; they show that the VaR is positively correlated
with skewness and negatively related with kurtosis. The relationships are much stronger
in scatter plot C and D, where 30 years of data from 1986 to 2015 is used. The practical
implication of these scatter plots is that a risk manager would face a higher tail risk if the

return distribution is leptokurtic and skewed to the left.

< Figure 1 Skewness and VaR >

5.2 Applying the skewness-kurtosis ratio tests

The skewness-kurtosis ratio tests, McLeod and Li (1983) test, as well as the autocorrelation
test by Ljung and Box (1978) are applied to the log returns. The results are reported in
Table 4. In the table, LB is the Ljung-Box test, whereas McLi, Skew, Kurt and Joint refer
to the same tests reported in Table 1 and 2. The number of lags used in Ljung-Box and
McLeod-Li tests is 20 and 30 when A is 5 and 10 respectively. Under the null hyothesis, the
reported test statistics of Skew, Kurt and Joint are distributed as Chi-square with 1, 1, and
2 degree(s) of freedom respectively. In the last three columns of the table, sd, k3 and k4 are
the scaled standard deviation, standardized third and fourth order cumulant statistics for
&2 /\/h, g/ (ho®?) and Ry /(ho*) respectively.® If the returns are IID, the expected values of
these three statistics will not vary with h. Hence any large changes in them, especially k3

and k4, would likely be accompanied by large skewness and kurtosis test statistics.
< Table 4 Tests on raw returns >

Consistent with the literature, the squares of returns of our sample are highly autocor-
related, as is evidenced from the large McLi statistics. More importantly, the skewness and
kurtosis ratio test results confirm the presence of third and fourth order depedence in the
eight stock index returns; the only exception is the kurtosis ratio test of the fornightly returns

of UK large stocks, which shows an insignificant test statistic of 0.9.

5.2.1 AR model

As explained in section 2, higher-order dependence could also be caused by linear autocor-

relation in the daily returns. Since Table 4 shows that all except Japan large stocks fail the

6Note that 52, k3 and K4 are estimated using the h-period returns 7, whereas o is obtained from the
daily returns r;. Under the IID assumption, 3/ Vh and k4/h are respectively the skewness and kurtosis of
h-period returns.

12



Ljung-Box test, an AR(5) model is used to remove linear correlation from the log returns.”

Table 5 reports the results when the same tests are applied to the AR residuals. It can be
seen that the Ljung-Box test statistics are now considerably lower in all eight cases, although
linear dependence can still be detected in the residuals of US large and small stocks as well as
UK small stocks.® Perhaps more importantly, the skewness and kurtosis ratio tests confirm

the presence of nonlinear dependence in the returns.

< Table 5 Tests on AR-filtered returns >

Autocorrelation and intervalling effect The results in Table 4 and 5 reveal the impact
of autocorrelation on the intervalling effect of the standardized third and fourth order cu-
mulants. Compared with Table 4, all four large stock returns, as well as the US small stock
returns in Table 5, have larger k4 and more negative £3; hence, the associated skewness and
kurtosis test statistics are larger. The observed relationship is reversed for the small stock
returns in the other three countries, namely UK, Germany and Japan.

At first glance, it is surprising that the AR residuals can show signs of further deviation
from the null hypothesis (as indicated by higher skewness-kurtosis test statistics, as well as
larger variations of k3 and k4 with respect to h). To explain such behaviour, without loss of
generality, we assume here that all index returns follow an AR(1) process described by (6)
and that the innovations e; have a finite nonzero k-th order cumulant denoted as k. ;. Note

that the k-th order cumulant of r, can be wriitten as
k1
/fk:(l—a) * Kek

Here, we show how linear correlation could give rise to the observed behaviours of k3 and
k4 in the weekly returns (h = 5); the same principle is also applied in the case of fortnightly
returns (h = 10). Consider first the standardized statistic £3. The third order cumulant of

weekly returns is

5
cum (74, 7, 7¢) = Zcum (riy7ism3) +3 Zcum (riymi,mi) + Z cum (14, 7, 7)) (34)
i=1 j#i itk

By virtue of Lemma 1, the summand in the second term on the right of (34) is either zero,

aks or a’ks. Since autocorrelation in stock returns, if any, is weak, a is small and hence a?

3

is negligible. Similar analyses show that cum(r;,r;,7%) is of even smaller value, a’k3 or less.

Hence, the third order cumulant of returns in Table 4 is approximately

TIf AR(1) is used, all except Japan large- and small-cap residuals fail the Ljung-Box test.
8 All residuals pass the Ljung-Box test when AR(15) is fitted.

13



cum (74, 74, 1) & 5Kz + 12ak3. (35)

The corresponding third order cumulants in Table 5 are
cum (€, €, €;) = Dkeg =5 - (1 — a3) K3 & DKs (36)

since a is small. Now, declining variances (0?) with respect to h implies a < 0 for the first
five index returns in Table 4. Since k3 < 0, (36) is less than (35), hence the AR residuals
have more negative k3 statistics than those of the weekly returns. For the last three small
stock returns, as the variance increases with h, a > 0 and, thus, the AR residuals give rise
to less negative k3 statistics.

For the standardized kurtosis k4, we can use the same method of analysis and obtain for

the weekly returns

5 4
cum (7, 7, 7, )~ Z cum (14, r;, 13, 7;) + 4 Z cum (74, 74, T4, Ti41) (37)
i=1 =1
~ bk4+ 16aky

whereas for the residuals, the cumulant is
cum (€, €, €4, €;) = DReyg =5 - (1 — a4) K4 ~ DKy (38)

Since k4 > 0, positive a implies that (37) is greater than (38), whereas a negative a produces

the opposite outcome, which is consistent with the reported k4 statistics in Table 4 and 5.

5.2.2 GARCH models

To remove both linear and quadratic dependence from the index returns, AR(1)-GARCH
with normal innovations is used, and Table 6 reports the test results on the filtered standard-
ized shocks. As expected, all standardized shocks pass the McLeod-Li test. Although the
AR component is of order 1, the Ljung-Box test finds significant autocorrelation only in the
UK small-cap shocks when h = 5, thus illustrating the role of GARCH in helping to remove
linear dependence from the returns.” Also, as a result of the GARCH filter, the magnitude
of the k3 and k4 statistics, as well as the skewness-kurtosis test statistics are considerably

smaller. However, significant nonlinear dependence is still present in the GARCH-filtered

9The readers are reminded that there are a total of six rejections of null hypothesis for the Ljung-Box
test in Table 5 when AR(5) is fitted to the index returns.
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returns, for none of them pass the joint skewness and kurtosis tests. Third order nonlinear
dependence seems to be the main culprit, as all except UK small-cap with h = 10 fail the

skewness ratio test. In comparison, only half of the kurtosis ratio relations fail to hold.
< Table 6 Tests on returns filtered by AR(1)-GARCH-Normal >

Stock markets are famous for their dramatic crashes during crises when markets are highly
volatile. An increasingly more negative k3 measures as h increases implies the presence of
third order nonlinear dependence in the shocks, possibly a reflection of the fact that during
financial market crashes, negative returns tend to be large and persistent, resulting in much
more left-skewed weekly or fortnightly returns than would otherwise be if the shocks were
IID. Finally, it is remarked that varying the order of AR terms in the GARCH model has
the same impact on the k3 and k4 statistics as in the case when AR(5) is fitted to the index

returns.

6 Conclusion

Skewness and kurtosis ratio tests are developed using the GMM technique in this paper.
In particular, overlapping observations are used in order to incorporate more information
into the proposed tests. This is achieved by explicitly modelling the dependencies in the
overlapping data under the IID assumption. Simulation experiments demonstrate that the
proposed tests are robust to moment condition failure and exhibit good size properties in
comparison to other nonlinearility tests such as the McLeod and Li test.

Applications of the skewness-kurtosis ratio tests to global major equity markets illustrate
their complementary role to existing linear and nonlinear diagnostic tests. Several cases are
noted in which the Ljung-Box and McLeod-Li tests fail to detect presence of dependence
structures, whereas the proposed tests find violations of the skewness-kurtosis ratio relations.
The ability of the tests to shed light on the nature of nonlinear dependence is particularly
useful when multiperiod forecasts of tail events are required, for tail risks are found to be
associated with the level of asymmetry and tail fatness of the distribution as measured by

skewness and kurtosis respectively.

A Appendix

Analytical proofs for the covariance matrices Sy used in the skewness-kurtosis ratio tests are

provided here. The required covariances may be divided into three categories: covariance
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between products of single-period random returns (e.g. si’ﬁ), between products of single-
period and h-period random returns (e.g. sii), and between products of h-period random
returns (e.g. si’fi), with increasing degrees of complexity.

In all three cases, the required covariances can be obtained using the indecomposable
partition method stated in Lemma 2. However, in order to facilitate an understanding (and
cross verification) of the proofs, we first consider the results for the covariances between the
products of single-period random returns. These are provided in A.1 where relations between
cumulants and moments are introduced. A.2 provides Lemma 2, which is required for the
derivation of the covariances of the products of multiperiod random variables. Examples are
given to illustrate how the Lemma can be applied. A.3 derives all the required covariances
involving multiperiod random returns. Finally, A.4 provides the required formulae to esti-
mate the cumulants from the central moments in order to obtain the covariance matrix Sy

for the proposed tests.

A.1 Proofs for 57}

First consider the following formulae provided by Kendall and Stuart (1969, p.70) for ex-

pressing higher-order central moments in terms of cumulants:

2
Hy = K2 =0,

:u?) = K3,

fy = /14+3a4,

fe = ke + 15k40° + 10k3 + 150,
fr = Ky + 2lks0? + 35k4ks + 105K50",

(39)
(40)
(41)
ps = ks + 10k307, (42)
(43)
(44)
(45)

g = Kg+ 28k0> + H56ks5ks3 + 35/@21 + 210k40* + 28011%02 + 1050°.

We shall now consider deriving an expression of ST{ (1 < p,q < 4) in terms of cumulants
using the above formulae. Under the IID assumption, z; and x;_; are independent for
[ # 0.1 Thus, by virtue of Property 3 in Lemma 1, cum(z}, 27 ;) = 0 for [ # 0. Using the
above moment formulae, and exploiting the fact that E(z,;) = 0, s{'{ = > cum(a},z{ ;) =

P.q) P ; Lr__ 2 L2 _ 2,2
cov(wy, ) = Uy, — Hplly, it is straightforward that s;) = 0% and s7] = k3. For s77,

22 _ 2 2\ _
s11 = cov(y, 23) = iy — Hofly-

19Readers are reminded that @; = r; — ; see (15).
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Substituting for j, using (41) and replacing u, with o2, we have

4

2,2

Using the same principle, the other more complex covariances are derived as follows.

S = k430, (46)
s}f = kg5 + 10,%302, (47)
S = s+ 9o, )
sﬁl = kg + 14k40” + 103 + 1207, (49)
33 = ke + 15k40” + Ok3 + 150", (50)
¥ = st = ke 4+ 20m50% + Bdmamy + 102650 (51)
SP = g+ 28k607 + BBrgh + 34K2 + 204k40" + 280K202 + 960°. (52)

Letting h = 1 in, for example, (19) and (20) will give rise to the same formula for si’?

in (50) above. One important observation to be made here is that s{’{ contains the basic
structure for s'j and s}, Take the case of p = ¢ = 4 as another example; the right hand
sides of (26) and (27) in the kurtosis ratio test share the same cumulant terms with 34111111 in
(52): ks, ko2, Ksks, K3, Kaot, k30? and ¢®. Moreover, when h = 1, A, = B, = C), = 1,
yielding the same coefficients for all cumulant terms in sy’{, s{' and s;"}, where 1 < p,q < 4.
Therefore, as can be seen in A.3 below, h? (1 < p < 4), A, By, and C), reflect the effects
of having h-period returns in place of single-period returns under the null hypothesis of

independent returns.

A.2 Cumulant of products of random variables

The above shows how s7'{ can be obtained using the formulae provided by Kendall and

Stuart (1969). However, things become complicated when multiperiod random returns are
involved. Since the required covariances are essentially cumulants of the products of random
variables, we introduce here the concept of an indecomposable partition used by Brillinger
(1975, Section 2.3) in order to obtain the cumulants of the products of x;.

Definition Consider a partition Py U --- U Py of the table of entries (not necessarily

rectangular) given below

(1,1) --- (1,Jy)
(L) e (L)
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Sets P, and P, are said to hook if there exists (i1,j1) € P and (iz,j2) € Pyr such
that iy = io; that is (i1,71) and (iz,j2) are from the same row. P, and P, are said to
communicate if there exists a sequence of sets P, = Pp, Ppy, ..., Pny = Pnr such that
P, and P, . hook for n=1,...,N —1. A partition is said to be indecomposable if all of
1ts sets communicate.

Each row in the table above corresponds to a product of random returns in our paper.
So, I = 2, as we need only covariances that are second order cumulants. Take the case of
cum(af, 7)) in s for illustration, we can let the first row of entries in the above table
correspond to z?, whereas the second row correspond to Z} ;, so that J; = 3 and J, = 4.
An indecomposable partition as defined above is one that contains at least a set in which at
least one element is from 3 and the other from 77} .

The definition of an indecomposable partition is used by Brillinger (1975) to obtain the
joint cumulant of products of random variables, as presented in Lemma 2 below.

Lemma 2 Consider the (two way) I random variables

where j=1,...,Jiandi=1,...,1. The joint cumulant cum(Y1,...,Ys) is given by
Zcum (Xij;ij € Py)---cum (X554 € Py)
P

where the summation is over all indecomposable partitions P = Py U ---U Py;.

Example 1 Consider the simple case of cum(z7,z7 ;) in sf% Then in the notation of

Lemma 2, Y7 = X3 X5 and Yy = Xy Xoy, which correspond to z? and z? ; respectively.

Applying Lemma 1 and making use of the fact that E(z;) = E(z;;) =0,

Cum(Y1,Y2) = Cum(X11,X127X21,X22)
+cum (X1, Xo1) cum (Xja, Xoo) + cum (X1, Xog) cum (X2, Xo1) ,

which gives rise to
cum (ac?, xfﬁl) = cum (zy, Ty, Ty_y, Ty—y) + 2cum (4, :z:t,l)2 ) (53)

Note that cum(z, z;)cum(x;_;, z;;) is not an indecomposable partition because there is no

cumulant term that links the z? and z? ; together.
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A.3 Proofs for S{] and S}

Here, we introduce some preliminary results and a simplified notation, then proceed to derive

the required covariances involving multiperiod random returns using Lemma 2.

A.3.1 Preliminary results

There are two properties of z; which render the derivation of covariance matrices Sy relatively
straightforward. Firstly, E(z;) = 0. Secondly, z; and z;_; are independent except for [ = 0.
The first property enables us to ignore all indecomposable partitions that result in E(x;) as
a cumulant term. By virtue of Lemma 1, the second property implies that for j random

variable z’s at time t or ¢t — [, we have

ifl=0
cum (T, ..., Ty g) = K 1 ’ (54)
0 ifl#0.
If the j random variables are a mixture of z;’s and h-period random returns z;_;’s,
- kj for1—h<1<0,
cum (4, ..., Ty ) = 55
(z: -t) {O for [ > 0. (55)
Finally, for j h-period random returns z’s at time ¢ or t — [,
~ - (h—l|)k; for |I] <h,
cum (Ty, ..., T 1) = 56
(@ t=1) {O for |I| > h. (56)

A.3.2 Notation

To derive the required covariances of multiperiod returns, it is helpful to to simplify the

notation in the following way. We denote the j-th order joint cumulant of random variables

Y1, Y; by (y1---y;), that is
cum (yl; 7y_]> = <y1 .. yj> .

Suppose for example y; = y» = u and y3 = --- = y; = v. Then the cumulant can be simply

written as
cum (y1, .., y;) = (u’v/7?).

Note that (-) does not represent the cumulant of the products of random variables; for

instance, (z3) =cum(z, r,r) #cum(z?).
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A.3.3 Covariances for skewness ratio test

The covariances between single-period returns are already provided in A.1. Next, we con-
sider covariances that involve h-period returns. First, consider the simple case of sy’ h =

> cum(z;, 77_,). Applying Lemma 2,

cum (xt,a:t l) <$t$t z>+3 Ty <37t l>

for 1 —h <1 <0, zero otherwise. Using results (55) and (56),
cum (24, 7;_,) = k4 + 3ho?,

SO 31 h = h[k4 + 3ho?]. Similarly, for 1 —h <1 <0,

cum (27,7} ) = (232 )+ 3{(afT,0) (T7_)) + 3 (2@} ) (2} )
+9(x}7} ) (2Te) + 9 (2 Ty) (277,
+9 <$f_l> (4Ty_p) <xt l> + 6 (x4 Zp—1) (2Ty—) (24 T4—y) (57)
= kg + (3h +12) kyo? + K3 + (9h + 6) o°

which if multiplied by h gives rise to si’z To see how the number of each type of indecom-
posable partition is obtained in (57), take (27%,) (z;,Z7,) as an example: there are three
ways of choosing z? from 2} and three ways of choosing 7, ; from 72, to yield (z?7;_;); there
is only one left way for the remaining random variables to form <$t$t,l>- So, the required
number is 3 x 3 x 1 =9.

Now in the case of cum(fﬁ? , i?f_l) in si’f,i, each term in the sum of products of cumulants
will retain the same form as the right hand side of (57), and replacing z; with z; yields the

expression for cum(Z, Z}_,). So, making use of (56),

38 = Z(h—|l\)m6+[6h2( )9S (h— 1)) }5402
193 (h—Ji))? [9h2z — ) +6Y (h— ) }

where the summation is from [ = —h+1, .., h—1. Note that 3" (b — |I|) = h%, 32 (h — |I|)* =
A, and 3 (h — |I])* = By, and this completes the proof for the expressin of 32:,31 in (20).
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A.3.4 Covariances for kurtosis ratio test

From the above derivations of S 7 and Sl 'n» We can see that covariances between products of
single- and h-period random returns yield a simple multiple of h, and provide the basic form
for more complex covariances between products of h-period random returns. These steps of

proof are similar for covariances in the kurtosis ratio test. So we have

s}:i = Zcum (e, T},)
= Z [<xtxt l>+4 T4 Ty <a:t l>+6<xtxt l> <xt l>]

= h [Ii5 + 10hkK30o } .

Also, multiplying by h the following cumulant

cum (27,7})) = (27Z ) +6 (a7 ) (T]_)) + 8(w:@} ) (weTsy)
4 (@7 Ty ) () + 6 (7)) (@@ ) + 12 (2@ ) (24 @0) (T7)
= kg + (6h + 8) kyo® + (4h + 6) k3 + 12h0°

. 2,4 4,4 . i . o . 4 ~4
yields s77,. The case for s;7), is more complex; the indecomposable partitions of cum (xt , xt_l)

are

(m@) ) + 6 (aiZ] ) (T7_)) + 6 {xiz) ) (x}) + 16 (2}7 ) (wiTyy)

+4(a{T ) (T} ) + 4 () ) (2 ) + 24 (2377 ) (m@] ) + 242} %)) (27 %)

+18 <xtxt l> <xtmt z> + 16 <xt:z:t l> <xtxt l>

+36 (z72; ;) (a7) (T_,) + 48 (x}Ty ) (w20 ) (T7))

+48 <xtxt l> TiTp_y <:17t> + 72 <x25? l> (4@ ) (T4 Ty)

+16 <xf’> <a:t l> (@) + 24 <xf> <xt$t l> <$t l> +24 <xtft l> <a:t l> <:Bf>

+36 (272 ) (27 Te) (T ) + 36 (%)) (2@ ,) (7)) + 144 (07Ty) (2@ ,) (weTyy)
+72 <:1:?> Ty Tyg) (T4 Ty <:ct l> + 24 (2T ) (g ) (X4 @yg) (T4 Tp—y) - (58)

In the above, only (z7_,) and (Z}_,) yield a factor h. Thus

cum (2}, 7)) = ks + (6h+ 22) keo® + (4h + 52) kskz + 34k
+ (84h + 120) k40 + (100h + 180) K30> + (T2h + 24) 0°
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for | =1—h,..,0. Thus, multiplying the above by h yields sii. Replacing x¢ with 77 in (58)
gives us cum(Z}, Z}_;) which, after applying the result of (56), yields

(h—|I]) ks + [12h (R — [1]) + 16 (h — |I])*] Keo?

+ [8h (b — 1)) + 48 (h — |1))?] K5z + 34 (h — |1])* &

+ [36h% (b — |I]) + 96 (h — |I])* + 72 (h —]l|)]/<:4a
+ [64R2 (h — [1]) + 72h (h — [1])* + 144 (h — |I])*] k30>
+ [720% (b — |I)* + 24 (R — 1])*] 0®

Summing the above from | = —h 4+ 1 to h — 1 and noting Z h+1( —|ID* = C (h), we

have the required covariance.

A.3.5 Covariances for the joint skewness and kurtosis ratio test

The remaining covariances to be derived for the joint skewness and kurtosis ratio test are

23 43 34

3,4 .
Sihs Sin Sip and s’y Using the same method as above,

sfi = Z cum xf, EE??Z)
Z (272 ) + 6 (2,27 )) (o) + 3 (27 Tey) (T])))

= h[ks + (3h + 6) k30|
For sif’l, applying the indecomposable partition method for cum(mf, EE?_Z) yields

(@0F) + 3 (20Fi) (F) + 6 (250) (o)) + 12 (332) wido)
+4 (@} ) () + 12(a}T, ) (o] ) + 18 (2fT] ) (27 Ty)
+12 <xt> <xt z> T4Tyy) + 18 <$t$t—z> <xt> <;vt 1>
+36 <£L’t$t l> <.I't> 1 Ty—g) + 36 <:L‘t T l> Ty 1) (T )
= k7 + (3h + 18) k50” + 3dryrs + (30h + 72) k3ot
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3,4

Multiplying the above result by a factor of A gives rise to s‘f:i. $1p Is a mirror image to 311:2’

so we have

st = > [adT) + 6 (afT)) () + 3wty (af) + 12 (077 (e
+4 <xtwt,l> <£L‘t z> + 12 <£Ut33t l> <xt Ty z> + 18 <xtxt z> <xtff_l>
+12 (@) (af) (@ @) + 18 (may_)) (7)) (T7_))
+36 <xt :Ut,l> <Z’?ﬁl> (x4xyg) + 36 <xta:t7l> (24Tyy) (:c[a?t,lﬂ
= h[ky+ (6h + 15) k50 + (4h + 30) Kaks + (66 + 36) k30|

Replacing the z; in the above with z; yields the required si’f}t :

sih = O [(h= 1) 7+ (9h (b — |I)) + 12 (h = [1])?) r50”
+ (4h (h = 1)) + 30 (h — |I)?) #ar
+ (3002 (h — [1]) +36R (h — |1))* + 36 (h — I])*) Kk30"]
= h’k. + [9h3 + 12Ah} Ks0? + [4h3 + 30Ah} Kak3
+ [30h* + 36h A, + 36By] kso®,

and this completes the proofs.

A.4 Estimation of cumulants

The covariance matrix Sy is expressed in terms of cumulants, which in practice can be

estimated using central moments as shown below.!! Note that ko = p, and k3 = pu5.

Ky = i —30%, (59)
Rs = p5— 10pz07, (60)
Ke = g — 15p,0% — 10p3 + 3009, (61)
Rr = jip — 21507 — 35pup15 + 210#3‘747 (62)
kg = fig — 281607 — 56pugpy — 3505 + 420,0" 4+ 560u30° — 6300°. (63)

See Kendall and Stuart (1969, p.71).
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Table 1. Empirical test sizes: all required moments exist

Normal Student with 9 d.f.
N h  a(%) Skew Kurt Joint McLi Skew Kurt Joint McLi
250 5 10 8.14 6.42 6.70 9.14 8.28 5.26 6.46 8.08
4.32 3.16 4.16 4.96 4.30 2.92 4.02 4.88
1 1.22 1.18 1.78 1.12 1.24 1.12 1.66 2.08
10 10 7.06 4.26 5.76 9.08 7.08 4.02 5.74 8.76
3.96 2.66 3.92 4.80 4.00 2.54 3.76 5.36
1 1.28 1.18 1.62 1.48 1.10 1.12 1.80 1.84
20 10 6.06 3.26 4.90 9.08 5.74 3.28 4.70 8.56
5 3.04 2.38 3.12 5.04 3.38 2.08 2.88 5.46
1 0.80 1.16 1.48 1.56 0.82 0.86 1.40 2.12
500 5 10 8.46 7.90 7.24 9.72 8.60 7.04 6.76 9.02
4.42 3.92 4.14 5.20 4.20 3.48 4.24 5.50
1 1.12 1.20 1.50 1.32 1.24 1.28 1.66 2.10
10 10 7.74 6.14 6.56 9.92 8.26 5.76 6.88 9.00
4.50 3.12 4.34 5.52 4.40 3.36 4.52 5.78
1 1.44 1.46 2.00 1.64 1.54 1.50 2.12 2.14
20 10 7.50 4.32 6.16 9.70 7.24 4.54 6.24 9.76
3.88 3.18 3.98 5.16 4.40 3.00 4.44 6.06
1 1.28 1.56 1.96 1.62 1.58 1.30 2.20 2.30
1000 5 10 8.92 9.18 7.64 10.46 8.48 8.36 8.12 9.04
404 454 410  5.16 442 426 404 506
1 0.92 0.86 1.12 1.32 0.86 1.24 1.36 1.88
10 10 8.42 7.52 7.34 9.74 8.42 7.16 6.92 9.84
4.62 3.68 4.40 5.32 4.30 3.44 4.26 6.18
1 1.32 1.10 1.56 1.42 1.08 1.32 1.68 2.10
20 10 8.56 6.02 7.12 9.74 8.50 5.98 6.82 10.46
5.12 3.54 4.68 5.14 4.74 3.10 4.44 6.24
1 1.48 1.30 2.00 1.54 1.48 1.22 2.12 2.08

5,000 replications are used to calculate the empirical test size. N, h and a are the number of observations,
length of holding period and theoretical test size respectively. Skew, Kurt and Joint are respectively the
skewness ratio test, kurtosis ratio test and their joint test. McLi is the squared-residual autocorrelations test
of McLeod and Li (1983).



Table 2. Empirical test sizes: moment condition fails

Student with 5 d.f. Student with 3 d.f.
N h  a(%) Skew Kurt Joint MclLi Skew Kurt Joint McLi
250 5 10 7.74 4.36 6.30 8.04 6.08 3.46 5.76 7.54
4.24 2.74 3.98 5.44 3.72 2.36 3.86 5.52
1 1.22 1.16 1.78 2.56 1.44 1.24 1.88 3.28
10 10 6.52 3.46 5.52 8.66 5.74 3.08 5.36 8.60
3.92 2.28 3.74 5.88 3.50 2.24 3.66 6.76
1 1.16 1.20 1.92 2.60 1.40 1.08 1.94 3.52
20 10 5.16 3.10 4.20 8.56 4.48 2.50 4.16 8.88
5 3.04 2.04 2.86 5.66 2.78 1.86 3.06 6.48
1 0.90 0.86 1.42 2.66 1.30 1.00 1.52 3.80
500 5 10 7.96 5.74 6.48 8.90 6.38 3.74 5.86 7.60
406 288 444  6.18 338 228 406 594
1 1.38 1.32 1.72 2.98 1.28 1.18 2.06 3.84
10 10 752 482 634  9.12 6.06 340 576  8.64
4.42 2.96 4.26 6.20 3.42 2.40 3.86 6.84
1 1.46 1.54 2.20 3.16 1.30 1.40 2.10 4.50
20 10 7.00 4.00 6.28 10.24 6.10 3.34 5.54 10.08
4.22 2.78 4.16 7.06 3.38 2.16 3.72 8.08
1 1.56 1.22 2.12 3.48 1.44 1.18 2.14 5.62
1000 5 10 8.42 6.90 7.28 8.32 7.10 4.12 5.94 7.00
456 372 416  5.54 392 270 368  5.70
1 0.94 1.28 1.72 2.96 1.14 1.42 1.80 3.58
10 10 8.08 6.16 7.00 9.42 6.62 3.90 5.68 8.66
4.70 3.48 4.20 6.78 3.76 2.56 3.78 6.92
1 1.24 1.20 1.86 3.60 1.52 1.30 1.94 4.86
20 10 7.98 5.20 6.72 10.70 6.84 4.14 6.28 10.02
4.70 3.02 4.72 7.68 4.32 2.72 4.46 8.44
1 1.66 1.12 2.04 4.00 1.74 1.18 2.20 5.80

5,000 replications are used to calculate the empirical test size. N, h and a are the number of observations,
length of holding period and theoretical test size respectively. Skew, Kurt and Joint are respectively the
skewness ratio test, kurtosis ratio test and their joint test. McLi is the squared-residual autocorrelations test
of McLeod and Li (1983).



Table 3. Basic statistics

Big Cap Small Cap
No. of

observations h sd sk ku sd sk ku
uUs 2516 1 131 -0.33 10.30 1.67 -0.35 541
5 1.16 -2.36 42.48 1.51 -1.77 31.23
10 1.09 -4.75 91.14 1.42 -4.18 67.54
UK 2525 1 1.25 -0.14 7.55 0.79 -0.95 6.08
5 1.16 -1.47 29.58 0.93 -2.00 26.59
10 1.11 -3.28 44.26 1.01 -2.86 51.32
Germany 2539 1 1.45 0.03 5.81 1.17 -0.55 5.69
5 1.41 -1.70 19.97 1.31 -2.75 30.46
10 1.37 -3.70  40.89 1.31 -4.97 61.46
Japan 2540 1 1.61 -0.51 7.71 1.26 -0.97 11.73
5 1.52 -1.56 33.47 1.34 -2.66 42.15
10 1.48 -2.86 44.89 1.31 -3.51 48.03

sd, sk and ku are the standard deviation, skewness, excessive kurtosis respectively. Note that all
statistics are scaled so that if the returns are IID, the figures should remain unchange with regard to h .



Table 4. Tests on Raw Returns

h LB MclLi Skew Kurt Joint sd k3 k4

Big Capitalization Stock Index

1 131 -0.32 10.27

us 5 107.4  3987.5 14.0 5.1 17.7 1.16 -1.63 26.00
10 126.2  5201.6 16.2 4.2 19.5 1.09 -2.75 44.08

1 1.25 -0.14 7.52

UK 5 515 2893.7 10.9 7.6 18.1 1.16 -1.16 21.57
10 77.2 3631.1 15.6 0.9 16.6 1.11 -2.26 26.80

1 1.45 0.03 5.79

Germany 5 35,9 1928.1 325 10.3 53.7 1.41 -1.56 17.77
10 53.7 2429.9 41.8 8.0 57.8 1.37 -3.13 32.58

1 l1.61 -0.51 7.69

Japan 5 18.1 29794 6.7 17.4 19.3 1.52 -1.33 26.82
10 41.6  3188.6 10.3 4.0 11.7 1.48 -2.26 32.36

Small Capitalization Stock Index

1 1.67 -0.34 5.39

us 5 78.9 41285 11.4 11.3 17.2 1.50 -1.29 20.71
10 93.0 5420.0 19.3 5.1 21.5 1.42 -2.57 35.42

1 0.79 -0.94 6.06

UK 5 159.2  2054.5 52.9 283.4 329.2 0.93 -3.27 51.18
10 172.5 2328.0 60.2 536.3 614.4 1.01 -5.94  135.83

1 1.17 -0.55 5.66

Germany 5 85.7 20313 131.7 237.5 289.5 131 -3.91 48.54
10 92.3 22245 158.3 194.3 261.2 131 -7.07 98.00

1 1.26 -0.97 11.69

Japan 5 41.8 1002.5 34.2 69.4 71.7 1.34 -3.17 53.24
10 59.2 1008.3 23.0 21.6 29.3 1.31 -3.96 56.07

Diagnostic tests are carried out on GARCH-filtered returns. h refers to the length of holding period. LB is the
Ljung-Box test whereas McLi, Skew, Kurt and Joint refer to the same tests as in Table 1 and 2. sd, k3 and k4 are
respectively the scaled standard deviation, standardized third and fourth cumulants. There are about 2,500
observations in each time series and the reported test statistics are Chi square test statitics. Dark (light) shade
indicates significance at 1% (5%) level.



Table 5. Tests on AR(10)-filtered Returns

h LB McLi Skew Kurt Joint sd k3 k4
Big Capitalization Stock Index

1 1.30 -0.58 9.32

us 5 46.2 4147.7 40.6 61.7 77.8 1.30 -2.71 42.17
10 59.8 53455 55.7 72.3 98.6 1.29 -4.78 85.50

1 1.24 -0.32 6.73

UK 5 17.6  2740.3 18.6 38.3 48.0 1.24 -1.59 28.15
10 379 3420.0 33.5 18.0 44.1 1.23 -3.25 40.47

1 1.44 -0.05 5.33

Germany 5 21.0 2038.3 47.0 24.8 81.6 1.44 -1.92 20.66
10 37.8 25338 64.5 26.3 95.5 1.46 -3.87 41.46

1 1.61 -0.64 7.63

Japan 5 8.3 3039.3 12.1 394 40.0 1.61 -1.74 32.15
10 30.2. 3246.2 18.6 20.3 27.7 1.62 -2.97 44.31

Small Capitalization Stock Index

1 1.65 -0.53 5.25

us 5 38.9 4083.2 38.7 70.8 76.9 1.65 -2.24 31.34
10 50.5 5350.7 63.6 73.1 97.8 1.66 -4.36 66.71

1 0.78 -0.67 5.59

UK 5 42.6 1959.1 14.0 42.0 42.0 0.78 -1.73 26.52
10 55.6 2231.6 20.9 46.3 48.4 0.78 -2.92 54.06

1 1.15 -0.43 6.13

Germany 5 26.0 1757.4 77.5 59.1 119.0 1.15 -2.96 32.83
10 34.3 1921.9 93.1 59.3 129.1 1.17 -5.21 65.24

1 1.26 -0.76 10.95

Japan 5 11.6 1094.7 31.7 37.6 49.6 1.26 -2.80 42.13
10 30.5° 1104.1 20.3 12.0 23.9 1.25 -3.48 46.26

Diagnostic tests are carried out on GARCH-filtered returns. h refers to the length of holding period. LB is the
Ljung-Box test whereas McLi, Skew, Kurt and Joint refer to the same tests as in Table 1 and 2. sd, k3 and k4 are
respectively the scaled standard deviation, standardized third and fourth cumulants. There are about 2,500
observations in each time series and the reported test statistics are Chi square test statitics. Dark (light) shade
indicates significance at 1% (5%) level.



Table 6. Tests on returns filtered by AR(1)-GARCH-Normal

h LB McLi Skew Kurt Joint sd k3 k4
Big Capitalization Stock Index

1 1.00 -0.52 1.45

us 5 26.73 26.15 11.54 0.06 15.59 0.98 -1.23 3.15
10 33.28 33.87 5.23 0.88 9.39 0.93 -1.44 4.22

1 1.00 -0.34 0.77

UK 5 11.19 23.51 18.08 1.98 18.14 1.01 -1.15 2.75
10 21.42 37.19 14.03 0.27 14.36 0.99 -1.72 4.46

1 1.00 -0.36 1.21

Germany 5 13.79 22.45 29.15 4.59 29.24 1.01 -1.43 4.39
10 21.15 25.74 30.25 4.95 30.45 1.00 -2.45 12.67

1 1.00 -0.42 0.85

Japan 5 10.57 26.92 16.74 9.03 17.88 1.04 -1.22 4.11
10 15.69 37.51 8.69 2.20 8.81 1.04 -1.54 3.68

Small Capitalization Stock Index

1 1.00 -0.36 0.59

us 5 20.93 30.96 12.71 0.07 16.42 0.98 -1.03 1.51
10 25.44 38.41 7.08 0.49 9.34 0.93 -1.35 4.34

1 1.00 -0.65 2.00

UK 5 36.44 13.87 14.26 14.76 17.50 1.07 -1.51 5.48
10 42.52 24.68 3.45 13.84 13.85 1.13 -1.47 2.94

1 1.00 -0.61 2.34

Germany 5 18.63 9.89 18.84 4.86 19.76 1.04 -1.60 5.31
10 30.23 13.65 15.16 2.84 15.46 1.04 -2.23 7.56

1 1.00 -0.81 3.01

Japan 5 19.26 12.27 12.96 6.14 13.32 1.06 -1.71 6.48
10 25.58 16.77 5.53 4.75 6.21 1.09 -1.87 4.13

Diagnostic tests are carried out on GARCH-filtered returns. h refers to the length of holding period. LB is the
Ljung-Box test whereas McLi, Skew, Kurt and Joint refer to the same tests as in Table 1 and 2. sd, k3 and k4
are respectively the scaled standard deviation, standardized third and fourth cumulants. There are about
2,500 observations in each time series and the reported test statistics are Chi square test statitics. Dark (light)
shade indicates significance at 1% (5%) level.



Figure 1. A scatter plot of standardized VaR against skewness and kurtosis
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Scatter plot A and B are based on 10 years of data from 2006 to 2015 whereas scatter plot C and D are based
on 30 years of data from 1986 to 2015. The skewness, kurtosis and VaR are measures of single-period returns
with the latter obtained by dividing the first percentile of the returns by the associated standard deviation.



